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Genetics of monozygotic twins reveals 
the impact of environmental sensitivity 
on psychiatric and neurodevelopmental 
phenotypes
 

Individual sensitivity to environmental exposures may be genetically 
influenced. This genotype-by-environment interplay implies differences 
in phenotypic variance across genotypes, but these variants have proven 
challenging to detect. Genome-wide association studies of monozygotic 
twin differences are conducted through family-based variance analyses, 
which are more robust to the systemic biases that impact population-based 
methods. We combined data from 21,792 monozygotic twins (10,896 pairs)  
from 11 studies to conduct one of the largest genome-wide association 
study meta-analyses of monozygotic phenotypic differences, in 
children, adolescents and adults separately, for seven psychiatric and 
neurodevelopmental phenotypes: attention deficit hyperactivity 
disorder symptoms, autistic traits, anxiety and depression symptoms, 
psychotic-like experiences, neuroticism and wellbeing. The proportions 
of phenotypic variance explained by single-nucleotide polymorphisms 
in these phenotypes were estimated (h2 = 0–18%), but were imprecise. 
We identified 13 genome-wide significant associations (single-nucleotide 
polymorphisms, genes and gene sets), including genes related to stress 
reactivity for depression, growth factor-related genes for autistic traits 
and catecholamine uptake-related genes for psychotic-like experiences. 
This is the largest genetic study of monozygotic twins to date by an order 
of magnitude, evidencing an alternative method to study the genetic 
architecture of environmental sensitivity. The statistical power was limited 
for some analyses, calling for better-powered future studies.

Complex phenotypes are likely to be affected by genetic and environ-
mental factors and their interactions. Interactions between genetic 
variants and the environment increase phenotypic variability1,2, 
which may be reflected in differences in the mean and/or variance of 
a phenotype in a population. This is evidenced when a genotype is 
associated with phenotype levels only under certain environmental 
conditions. Environmental sensitivity can also increase the variance of 
a trait if a genotype produces a wide range of phenotypes depending on 

environmental exposures, which may or may not also affect its popu-
lation mean. Genetic knowledge of environmental sensitivity is most 
consistently exploited in bioengineering and evidenced in behavioural 
ecology, but it has been extremely challenging to evaluate in humans, 
especially for psychiatric disorders3. Understanding the genetic basis 
of environmental sensitivity is crucial for improving human health, 
as it informs on the biological pathways implicated in variations in 
responses to environmental exposures.
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chromosomal and rare diseases14, but are unlikely to play a system-
atic role in common and polygenic complex traits15. Although all 
MZ twin pairs have the same degree of genetic similarity, they have 
varying degrees of phenotypic similarity. Greater within-pair differ-
ences in a population of MZ twins therefore reflect the pairs’ greater 
sensitivity to their non-shared environments. Jinks and Fulker16 pro-
posed a test in MZ twins for which the association between MZ pair 
differences and MZ pair mean score is obtained, and they provided 
a full description of its standard biometrical terms. The rationale 
behind their test of genotype–environment interaction is the same 
one that underlies tests involving inbred lines of animals that detect 
genotype–environment interaction through the heterogeneity of 
within-strain variances. We may now take single-nucleotide poly-
morphisms (SNPs) as measured genotype indicators and test for 
associations with within-pair differences.

A GWAS of MZ phenotypic differences can identify the loci associ-
ated with variations in environmental sensitivity while also controlling 
for dynastic and epistatic effects, which are difficult to account for in 
population-based approaches (Fig. 1 provides a schematic of a GWAS 
of MZ differences). Although this approach has been advocated for 
because it facilitates understanding of the genetics of environmental 
sensitivity12, the requirement for a large sample of MZ twins has been 
a major impediment to progress in this field. In this Article, we report 
the findings from a GWAS meta-analysis of MZ differences for seven 
psychological phenotypes, using data from up to 21,792 MZ twins 

In contrast with most GWASs, which estimate associations of 
genetic variants and phenotypic means, Genome-wide variance quan-
titative trait locus (vQTL) analysis4,5 aims to discover genetic variants 
associated with phenotypic variance, which can be prioritized for a 
statistical test of gene–environment interaction6. However, phenotypic 
variance may be affected not only by gene–environment interactions1, 
but also by selection7, phantom vQTLs8 and epistasis4. It is therefore 
challenging to robustly determine which potential mechanisms 
have given rise to the observed trait variance associated with a vQTL.  
Furthermore, commonly used population-based methods for  
estimating genetic effects using unrelated individuals suffer from 
variance inflation9, bias due to insufficient correction of demographic 
and indirect genetic effects10, and unstable test statistics for vQTLs 
when tested loci are in linkage disequilibrium with additive effects11. 
Although statistical correction for certain observed demographic 
effects (for example, age and sex) is possible, unobserved confounders 
(for example, residual population stratification, dynastic effects via 
parents, and assortative mating) cannot be corrected for.

GWASs of monozygotic (MZ) twin differences provide an alterna-
tive, family-based approach to estimating vQTLs that is less susceptible 
to these sources of bias12 and can therefore more reliably identify vari-
ants that reflect environmental sensitivity.

MZ twins are nearly identical genetically. Therefore, within-pair 
phenotypic differences are probably due to chance or the environ-
ment13. Somatic mutations may also play a role in MZ differences for 

Step 1: obtain phenotype
score for each MZ twin pair

Step 2: calculate the absolute phenotypic di�erence
score for each MZ pair

Step 3: Conduct GWAS on the di�erence score and 
genotype data from one twin from each pair
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Fig. 1 | GWAS of MZ differences approach. These analyses are conducted 
in three main steps: First, a quantitative phenotype value is obtained for a 
population of MZ twin pairs. Second, the absolute phenotypic difference score 
is calculated for each MZ pair. This score reflects phenotypic differences due 
to environmental effects, as the environment makes genetically identical twins 
diverge phenotypically. The absolute phenotypic difference is corrected for 

age, sex, ten genetic principal components and any study-specific covariates. 
The residuals are standardized and inverse rank transformed. Third, a GWAS of 
the MZ differences score is conducted, using the phenotypic differences score 
for one twin from each pair and their genotype data; therefore, the sample 
comprises unrelated individuals.
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(10,896 pairs) from 11 studies. This is the largest GWAS conducted on 
MZ twin differences to date, representing an order of magnitude more 
participants than two previous MZ twin differences GWAS17,18. We con-
ducted meta-analyses separately for children, adolescents and adults 
and identified 13 genome-wide significant associations across the phe-
notypes studied. This enabled us to estimate the SNP heritability (that 
is, the proportion of a trait’s variance that can be attributed to genetic 
variation explained by SNPs) of environmental sensitivity to various 
mental health phenotypes (adolescent attention deficit hyperactivity 
disorder (ADHD): h2 = 0.18 and s.e. = 0.11; child ADHD: h2 = 0.04 and 
s.e. = 0.06; adult autistic traits: h2 = 0.09 and s.e. = 0.15; depression: 
h2 = 0.03 and s.e. = 0.09). We also found that higher genetic liability 
to depression was associated with greater environmental sensitivity 
to depression in adults.

Results
Our empirical analyses included a GWAS meta-analysis, gene-based 
and gene set analyses and Mendelian randomization analyses (Fig. 2 
provides a flow chart for the study). Authors of contributing studies 
were asked to conduct GWASs of MZ differences separately for samples 
from child, adolescent and adult twins if repeated measures across 
lifespan were available. The study-level GWAS results were subjected 
to quality control and harmonization (Supplementary Information 
section 2.2) using EasyQC (version 23.8)19, then meta-analysed using 
the inverse-variance-weighted fixed-effect meta-analysis method 
in METAL (2011 release)20. GWAS meta-analyses were conducted 
using the largest available sample from each study and separately in 
developmentally stratified samples (Methods). GWAS meta-analysis 
results were quality controlled (Methods), then used for gene-based 

Longitudinal data available for any phenotype?

Potential studies with twin data 
contacted

For each phenotype, select samples based on developmental categories, then  
conduct a separate GWAS for each sample

Studies register interest if all eligibility
criteria are met

Yes No

Study-level quality control on GWAS
submissions

GWAS on the largest available sample for each phenotype 

Analysis plan distributed to participating 
studies

Studies upload GWAS results to 
repository

Select data for analyses
SNPs with missing β values, s.e.
values, P values or imputation
quality score, a minor allele
frequency of <0.01 or an imputation
quality score of <0.5, as well
as duplicate and monomorphic
SNPs, were excluded, and alleles
were harmonized across studies

GWAS meta-analysis (METAL)

For each phenotype:
(1) The largest sample was obtained by selecting the
largest-sampled GWAS from each contributing study,
irrespective of the developmental group
(2) GWAS results from contributing studies were
grouped according to developmental categories

SNP annotation and mapping (FUMA)

Gene-based analysis (MAGMA) Gene set analysis (MAGMA)SNP heritability analysis (LDSC)

Quality control of GWAS meta-analysis results

For each phenotype, SNPs missing in >50%
of the studies were removed

Meta-analyses were conducted
on developmentally 
stratified samples and the largest sample

Mendelian randomization 

Fig. 2 | Flow chart of the current study. Flow chart genome-wide association 
meta-analysis of MZ twin differences in the present study. The eligibility criteria 
and developmental categories are described in the Methods. If multiple data 
points were available during the same developmental stage (for example, 
ages 7, 8 and 11 years), the largest sample was selected. Total n values per 
phenotype (representing the total across participating studies) were as follows: 
13,738 (ADHD largest), 13,738 (ADHD child), 7,840 (ADHD adolescent), 12,354 

(anxiety largest), 10,494 (anxiety child), 7,932 (anxiety adult), 14,152 (autistic 
traits largest), 13,130 (autistic traits child), 6,050 (autistic traits adult), 21,792 
(depression largest), 10,510 (depression child), 18,074 (depression adult), 8,900 
(neuroticism largest), 3,636 (psychotic-like experiences largest) and 13,740 
(wellbeing largest). n values for GWAS analyses were halved as only data from one 
twin from each pair were included.
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and gene set analyses using MAGMA (version 1.08) in the FUMA web 
application (version 1.5.2)21 and SNP heritability analyses using LDSC  
(version 1.0.1)22. We used Mendelian randomization to estimate the 
effects of psychological phenotypes (as reflected in GWAS associations 
with means) on phenotypic variance (Methods).

Descriptives
Table 1 shows descriptive statistics of the GWAS meta-analysis sam-
ples per phenotype. Supplementary Information Section 1.1 and the 
Supplementary Data present descriptives for all of the participating 
studies. The largest sample was for depression symptoms, with 21,792 
MZ twins from 11 studies. The smallest was for psychotic-like experi-
ences (PLEs; 3,636 twins from two cohorts). Mean MZ correlations 
across studies ranged between r = 0.31 for wellbeing and r = 0.71 for 
child ADHD. Overall, within-twin MZ correlations tended to be lower 
in samples from adult twins than those from child twins.

MZ GWAS meta-analysis
Meta-analyses for each phenotype identified two genome-wide sig-
nificant variants (Table 2): one associated with variability in well-
being (rs2940988; P = 9.93 × 10−9), located in the intronic region of 
the protein-coding chromosome 4 open reading frame 19 (C4orf19) 
gene; and one (rs60358762; P = 5.07 × 10−9) associated with variance 
in anxiety symptoms in adults, located in the intergenic region of 
the protein-coding SLC15A1 gene on chromosome 13. Manhattan 
plots, quantile–quantile (QQ) plots and the genomic regions of these 
genome-wide significant variants are presented in Fig. 3. No variants 
were genome-wide significantly associated with variance in the other 
phenotypes (Supplementary Table 4 provides the top SNPs for each 
phenotype). Supplementary Figs. 7–11 provide Manhattan and QQ 
plots for all of the tested phenotypes.

Gene-based and gene set analyses
The MAGMA gene-based analysis (Methods) found several genes asso-
ciated with phenotypic variability; however, only two associations 
passed the threshold for Bonferroni correction for multiple testing 
(Table 2). The patched 1 (PTCH1) gene was associated with variance in 
depression (P = 1.80 × 10−6) and the chromosome 15 open reading frame 

38 (C15orf38) gene was associated with variance in anxiety symptoms 
(P = 2.00 × 10−7). Supplementary Figs. 12–16 and Supplementary Table 6 
provide the top genes per phenotype.

The MAGMA competitive test of gene sets (Methods) identified 
nine significant associations after Bonferroni correction for multiple 
testing (Table 2). Two gene sets were significantly associated with 
variance in depression symptoms, two with neuroticism, three with 
PLEs and two with autistic traits (one in samples from adults and one 
in samples from children). Supplementary Table 7 provides the top 
gene sets per phenotype, Supplementary Tables 8–11 provide details 
of significant gene sets and Supplementary Table 12 provides biological 
annotations for all genome-wide significant results.

SNP heritability
We estimated the SNP heritability of MZ differences using LDSC (ver-
sion 1.0.1)22 (Methods). The SNP heritability estimate of environmental 
sensitivity to ADHD symptoms in the samples from adolescents was 
0.18 (s.e. = 0.11); the estimate in the samples from children was 0.04 
(s.e. = 0.06). The SNP heritability estimate for environmental sensi-
tivity to adult autistic traits was 0.09 (s.e. = 0.15) and for depression 
symptoms it was 0.03 (s.e. = 0.09 in children and s.e. = 0.06 in adults). 
All estimates, including those from the remaining phenotypes, were 
not statistically significant (Supplementary Table 13). We could not 
estimate the genetic correlation (rg) between all phenotypes because 
the SNP heritabilities were too low and imprecise, except for child 
and adolescent symptoms of ADHD (rg = 0.82; s.e. = 0.56; P = 0.15). 
Overall, despite this being one of the largest samples of MZ twins to 
date, low power resulted in large confidence intervals around the 
heritability estimates.

Mendelian randomization
It has previously been speculated that environmental sensitivity might 
relate to polygenic liability rather than single loci, due to the environ-
ment interacting with a polygenic biological component23. We used 
Mendelian randomization to estimate the influence of the genetic 
liability of psychological phenotypes on their environmental sensitivity 
(Methods). We found a strong effect for depression (β = 0.84; s.e. = 0.26; 
P = 0.002). We also ran the analyses separately for our samples from 

Table 1 | Descriptive statistics of the samples in the current study

Phenotype Sample nstudies
a nMZ twins

b nfemale Mean age (years) Mean rMZ
c

ADHD symptoms Largestd 4 13,738 7,420 9.54 0.71

Childe 4 13,738 7,420 9.54 0.71

Adolescentf 4 7,840 4,821 20.28 0.58

Anxiety symptoms Largest 5 12,354 6,802 20.40 0.52

Child 3 10,494 5,881 10.01 0.54

Adultg 5 7,932 5,187 33.35 0.46

Autistic traits Largest 4 14,152 7,779 15.79 0.63

Child 3 13,130 7,084 10.22 0.69

Adult 3 6,050 3,567 22.53 0.63

Depression symptoms Largest 11 21,792 13,011 43.23 0.41

Child 3 10,510 5,726 10.05 0.51

Adult 11 18,074 11,780 43.62 0.38

Neuroticism Largest 4 8,900 4,096 35.05 0.35

PLEs Largest 2 3,636 2,135 15.91 0.46

Wellbeing Largest 9 13,740 8,009 41.30 0.31
anstudies represents the number of contributing datasets for each phenotype. bGWAS n was halved as only genotype data from one twin from each pair were used.cMean rMZ represents the 
mean MZ twin correlation across studies. dFor ADHD symptoms, the largest sample was the sample from children. In general, this category represents the largest available sample, which was 
obtained by selecting the largest sample from each study, irrespective of age group. eThe child category includes data from studies in which participants were aged 5–12 years.fThe adolescent 
category includes data from studies in which participants were aged 13–18 years. gThe adult category includes data from studies in which participants were aged >18 years. Data from individual 
studies are reported in the Supplementary Data.
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children and those from adults (Fig. 4). The signal for depression was 
driven by analyses in adults (β = 1.58; s.e. = 0.29; P = 5 × 10−7), with the 
childhood association attenuated (β = 0.35; s.e. = 0.35; P = 0.36), and 
these estimates differed significantly (interaction P = 0.008). There was 
little evidence for heterogeneity of effect estimates across depression 
liability instruments. Other phenotypes did not exhibit an influence 
of liability on environmental sensitivity after correcting for multiple 
testing (Supplementary Table 14). We found little evidence that mean 
body mass indices and years of schooling affected phenotypic vari-
ance. Since vQTL effects could be biased by main effects, we conducted 
simulations to evaluate the sensitivity of the analytical approach to 
the Mendelian randomization results being driven by this bias (Sup-
plementary Information section 7). We found that the MZ differences 
model can be liable to this problem under some phenotype normaliza-
tion approaches, but that this was less likely to be driving the results 
in this study because we normalized by inverse rank transformation 
(Supplementary Fig. 17).

Data simulation
We used simulations to investigate the properties of the method 
used to detect MZ twin-based variance loci and compared them with 
those of population-based vQTL methods. First, we found that the MZ 

twin-based method has the greatest power when the narrow-sense 
heritability is highest (Fig. 5a) and the residual variance is lowest, and 
therefore when variance effects explain the larger fraction of the dif-
ference between MZ pairs, as was suggested previously12. Second, we 
found that for moderate heritability the MZ differences approach 
has substantially greater statistical power than the population-based 
approach when sample sizes are equal (that is, 10,000 MZ twin pairs 
using the MZ twin-based method versus 20,000 unrelated individuals 
using the population-based vQTL method). However, in practice, the 
number of population-based samples generally available drastically 
outstrips the number of MZ twin samples available. When using a more 
realistic sample size (for example, 10,000 MZ twin pairs versus 500,000 
population samples), the MZ differences approach only achieves simi-
lar power to the population approach when narrow-sense heritability 
values are very high (for example, >0.9). It has recently been shown 
that a variant tested for interaction can have inflated test statistics 
when in linkage disequilibrium with a strong additive effect11, and 
we investigated whether that mechanism can also adversely impact 
MZ twin-based estimates. Our simulations show that this problem is 
substantially exacerbated through population-based vQTL methods 
compared with direct interaction tests, but the MZ twin-based approach 
is robust to this bias (Fig. 5b).

Table 2 | Genome-wide significant results

GWAS meta-analyses

SNP based analysis

Phenotype Sample SNP Chromosome Position Gene A1 EAF β s.e. P n Effect 
across 
studiesa

Anxiety Adult rs60358762 13 99,411,217 SLC15A1 A 0.03 0.44 0.1 5.07 × 10−9 3,033 +++??

Wellbeing Adult rs2940988 4 37,586,376 C4orf19 T 0.88 0.16 0.03 9.93 × 10−9 6,464 ++?++−+++

Gene-based analysis

Phenotype Sample Gene Chromosome nSNPs nparameters n Z statistic P

Anxiety Largest C15orf38 15 28 7 5,265 5.08 2.00 × 10−7b

Depression Largest PTCH1 9 130 12 10,166 4.63 1.80 × 10−6c

Gene set analysis

Phenotype Sample Gene set ngenes β s.d. s.e. P PBonferroni
d

Autistic traits

Child Genes downregulated 
in embryonic fibroblasts 
upon stimulation with 
TGFβ1 for 1 h

5 1.68 0.03 0.34 6.00 × 10−7 0.01

Adult Regulation of protein 
localization to cilium

7 1.43 0.03 0.26 1.00 × 10−8 0.0002

Depression Child

Proteasome regulatory 
particle

19 0.79 0.03 0.17 1.41 × 10−6 0.02

Proteasome 
degradation

50 0.52 0.03 0.11 2.48 × 10−6 0.04

Neuroticism Adult

Gemini of coiled bodies 9 1.01 0.02 0.20 2.00 × 10−7 0.003

Negative regulation 
of vasculature 
development

92 0.38 0.03 0.08 5.97 × 10−7 0.01

PLEs Adolescent

Regulation of dopamine 
uptake involved in 
synaptic transmission

8 1.37 0.03 0.28 5.00 × 10−7 0.01

Catecholamine uptake 
involved in synaptic 
transmission

11 1.23 0.03 0.26 9.55 × 10−7 0.01

Extrinsic component of 
endoplasmic reticulum 
membrane

5 1.63 0.03 0.35 1.59 × 10−6 0.02

aA question mark indicates that the SNP was missing in the study, − or + sign indicate whether the direction of effect for each study was the opposite of, or consistent with the direction 
of effect from meta-analysis. bThe Bonferroni-corrected P value significance threshold was P = 0.05/18,535 = 2.698 × 10−6. cThe Bonferroni-corrected P value significance threshold was 
P = 0.05/18,624 = 2.685 × 10−6. dPBonferroni represents the Bonferroni-adjusted P value for multiple testing correction. P < 5 × 10−8 was the significance threshold used to adjust for multiple comparisons 
when identifying genome-wide significant SNPs. A1, effect allele; β, beta estimate from linear regression; EAF, average effect allele frequency across studies.
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Discussion
Several genome-wide significant results were notable, including our 
finding that the PTCH1 gene was associated with variation in depression 
symptoms, as this gene has previously been reported to be associated 

with depression-related phenotypes, including neuroticism24,25, 
anxiety26, depression symptoms24, feeling emotionally hurt27 and sen-
sitivity to environmental stress and adversity27. The C15orf38 gene (also 
known as ARPIN-AP3S2) was associated with variance in anxiety symp-
toms in our samples from children and has previously been associated 
with type 2 diabetes in adults25,28 and corticotropin-releasing factor 
protein levels29, which are involved in regulating anxiety, mood, eat-
ing and inflammation30. Hypoglycaemia symptoms in type 2 diabetes 
include a rapid heartbeat, sweating and nervousness, all of which are 
physical sensations associated with anxiety. It is possible that certain 
variants in this gene impact sensitivity to the effects of diet and stress-
ors that are involved in the variability in insulin31, unpleasant physical 
sensations of which may be contextualized and made sense of as wor-
ries and anxieties (for example, the two-factor model of emotions32).

For autistic traits, the identified gene set included genes involved 
in tissue morphogenesis and healing that regulate the response to 
transforming growth factor beta (TGFβ1) levels and are involved in tis-
sue repair pathways33. Growth factors serve important roles in neurode-
velopment, immune function and development of the central nervous 
system and there is evidence that autism is associated with TGFβ1 and 
other growth factor-encoding genes34–36. For PLEs, the identified gene 
sets were related to the regulation of dopamine and catecholamine 
uptake. Our findings are supported by catecholamine’s involvement 
in the stress response and the hypothesized role of dopamine system 
dysregulation in the aetiology of psychosis37. Since gene–environ-
ment interactions have been implicated in variations in PLEs38, the 
association between the biological processes implicated herein and 
variability in psychotic experiences may partly be under the influence 
of the environment.

We also estimated the SNP heritability of environmental sensitiv-
ity (adolescent ADHD: h2 = 0.18 and s.e. = 0.11; child ADHD: h2 = 0.04 
and s.e. = 0.06; adult autistic traits: h2 = 0.09 and s.e. = 0.15; depres-
sion: h2 = 0.03 and s.e. = 0.09), but the estimates were not statistically 
significant. We also showed that variants that affect mean levels of 
depression and anxiety influence the variance of these phenotypes. 
Several population-based methods for vQTL analysis are known to 
be susceptible to bias due to mean effects. In contrast, in principle, 
the MZ differences design is protected from this problem. Therefore, 
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our study provides independent evidence that mean effects can 
influence variance.

The main strength of our study is the use of the MZ differences 
method to investigate the genetics of environmental sensitivity in 
the largest sample of MZ twins and a wide range of psychological phe-
notypes from a developmental perspective. The main limitation is 
the limited statistical power for detecting small genetic effects on 
variance. The findings should therefore be considered in light of our 
statistical power. Furthermore, as with all empirical analyses, our 
inferences depend on specific assumptions that may not hold. First, 
we took the MZ differences score to reflect genuine phenotypic vari-
ability. MZ differences, however, also reflect measurement errors that 
are difficult to separate from genuine phenotypic differences, and it 
is unclear whether MZ differences are stable across time. Future pro-
jects should investigate this approach with other phenotypes with low 
measurement errors, such as height, and consider a longitudinal design 
to assess the stability of these differences. Second, it is challenging to 
determine which mechanisms explain phenotypic variance. Genetic 
sensitivity to the environment and epigenetic processes, such as  
DNA methylation, imprinting, chorionicity and skewed X inactivation 

(for female MZ twins), also contribute to MZ phenotypic differences15,39. 
Also, the people included in our samples were all of European genetic 
ancestry since data from twins with DNA in other ancestries were not 
available in sufficient sample sizes. Our findings may not be generaliz-
able to non-European genetic ancestries. The current study underlines 
the utility of DNA data from twins and should encourage funding for 
genetic data collection in multi-ancestry twin cohorts.

In summary, we have identified novel genetic factors associated 
with phenotypic variability. Our study illustrates the importance of 
large meta-analyses of genotyped MZ twin samples as a method for 
discovering and understanding the genetics of phenotypic variance 
and environmental sensitivity.

Methods
This research complies with all of the ethical regulations related to the 
secondary analysis of data collected by various cohorts, each of which 
obtained ethical approval and informed consent.

Ethical approval
Danish Twin Registry. The collection and use of biological material 
and survey information was approved by the Regional Committees on 
Health Research Ethics for Southern Denmark. This study is registered 
in Southern Denmrak University’s internal list (notification number 
11.059) and complies with the rules of the General Data Protection 
Regulation.

Finnish Twin Registry. Ethics approval was obtained for multiple stud-
ies, the latest of which was related to the transfer of all available DNA 
samples, genotypes and associated phenotypes to the THL Biobank 
by the Hospital District of Helsinki and Uusimaa ethics board in 2018 
(1799/2017).

Netherlands Twin Register. Ethical approval was provided by the 
Central Committee on Research Involving Human Subjects of the 
VU University Medical Center in Amsterdam, an institutional review 
board certified by the US Office for Human Research Protections (IRB 
number IRB-2991 under Federal-wide Assurance-3703; IRB/institute 
codes, NTR 03-180).

Murcia Twin Registry. The procedures of this registry have been 
approved by the University of Murcia Research Ethics Committee.

Older Australian Twins Study. The Older Australian Twins Study 
(OATS) was approved by the human research ethics committees of 
the Australian Twin Registry, University of New South Wales, Univer-
sity of Melbourne, Queensland Institute of Medical Research (QIMR) 
and South Eastern Sydney and Illawarra Area Health Service. Written 
informed consent was provided by all participants.

QIMR. Studies were approved by the QIMR Berghofer Medical Research 
Institute Human Research Ethics Committee.

Swedish Twin Registry. The different twin studies received separate 
approvals from the regional ethical review board in Stockholm (Dnr 
80:80, 84:61; 93:226, 98:319 and 2010/657-31/3 (Swedish Adoption/
Twin Study of Aging); Dnr 98:380 (OCTO-Twin); and Dnr: 97:051 and 
2007/151-31/4 (HARMONY). Ethical approval for the PSYCH, TwinGene 
and Young Adult Twin Study in Sweden cohorts was given by the Upp-
sala Ethical Review Authority (2019-06066).

Twins Early Development Study (TEDS). Ethical approval for TEDS 
has been provided by the King’s College London Ethics Committee 
(reference: PNM/09/10–104). Written informed consent was obtained 
prior to each wave of data collection from parents and from twins 
themselves from age 16 onwards.
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Fig. 5 | The MZ differences approach complements population-based vQTL 
detection. a, Comparison of the power between the MZ differences approach 
and the population-based approach (using the deviation regression model 
method) for detecting vQTLs. Comparisons were made between the MZ pairs 
approach and two different sample sizes for the population-based approach 
(one matching (with double the number of unrelated individuals; 20,000) and 
one with a typical sample size for modern GWASs (500,000)). The power of the 
MZ differences approach increases as the narrow-sense heritability increases. 
b, False discovery rates (y axis) due to incomplete linkage disequilibrium (LD) 
with a tagging causal variant (x axis), compared between the MZ differences 
approach (left) and population-based approach (right). The box plots represent 
interquartile ranges around median values of the simulations, with the whiskers 
representing ±1.5× the interquartile range and the points representing outliers. 
The presence of an additive causal variant tagging the tested SNP leads to 
elevated false discovery rates in the population approach, but not in the MZ 
differences approach.
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TwinsUK. Approval was obtained from the TwinsUK BioBank, approved 
by the North West–Liverpool Central Research Ethics Committee 
(reference 19/NW/0187; Integrated Research Application System 
ID = 258513). This approval supersedes earlier approvals granted to 
TwinsUK by the St Thomas’ Hospital Research Ethics Committee and 
later by the London–Westminster Research Ethics Committee (refer-
ence EC04/015), which have now been subsumed within the TwinsUK 
BioBank.

Study design
Figure  3 provides a flow chart for the current study. The eligibility 
criteria for inclusion of a study’s data in the present study analyses 
included: (1) cohorts comprising at least 100 pairs of MZ twins; (2) 
genotyping data for one or both twins; (3) availability of imputed 
genotype data (for example, 1000 Genomes or Haplotype Reference 
Consortium (HRC) data); (4) complete data from both twins for one or 
more phenotypes (imputation of missing data for incomplete pairs is 
not recommended); (5) complete covariate data for both twins (that 
is, age, sex and principal components for the genotyped twin); and (6) 
samples of European ancestry. Many of the authors of the studies with 
contributing data are part of the Within Family Consortium.

The analysis plan and pipeline were written, pre-specified and 
shared with interested cohorts to enable them to conduct GWASs 
of MZ differences for their available phenotypes, then the results 
were uploaded to a designated repository (https://github.com/ 
LaurenceHowe/MZTwins-vQTL).

For some participating studies, data were available across the 
lifespan of participants, thus comprising repeated measures for certain 
phenotypes. It was therefore possible to explore genetic associations 
in the context of development by conducting developmentally strati-
fied analyses. The developmental groups were defined as childhood 
(5–12 years of age), adolescence (13–18 years of age) and adulthood 
(>18 years of age). GWAS analyses were conducted separately for dif-
ferent cohorts and for each developmental stage if data were available. 
For anxiety symptoms, depression symptoms and autistic traits, GWAS 
data were available for children and adults. For ADHD symptoms, 
GWAS data were available for children and adolescents. For wellbeing 
and neuroticism, the samples comprised adults only, and for PLEs the 
samples comprised adolescents only.

Two sets of meta-analyses were then conducted using the GWAS 
results: a developmentally informed analysis, whereby GWAS results 
across studies were grouped according to the developmental stage 
of the sample and meta-analyses were conducted per phenotype (for 
example, depression child or depression adult); and a developmentally 
agnostic analysis, whereby a meta-analysis was conducted for each 
phenotype using the largest sample from each study, regardless of the 
developmental stage (for example, depression largest or anxiety larg-
est). This ensured maximum power for meta-analysis per phenotype 
via the largest n value (Supplementary Information section 1.1 provides 
more details on study design).

Samples
The samples analysed in this study included MZ twin pairs from cohort 
studies or twin registries in Australia and Europe (Supplementary 
Information Section 1.2 and Supplementary Table 1 provide details 
of the participating studies). Informed consent and ethical approvals 
were obtained for all participating cohorts (Supplementary Informa-
tion). Table 1 shows the total sample sizes per phenotype and across 
developmental groups.

Phenotypes
The MZ differences method requires continuous or categorical 
non-binary phenotypic data to calculate variance. Therefore, we used 
mean symptom scores instead of case/control diagnosis and the pref-
erence was for continuous measures. Various instruments have been 

developed for the assessment of psychological phenotypes, as was 
reflected in the participating studies. The scales differed in the numbers 
of items included, the types of symptoms assessed and the informant 
source. If multiple rating scales of a phenotype were available, study 
authors were asked to select the scale with the most items (tapping 
most symptom domains). Scales were coded so that higher values 
represented higher symptom levels. Absolute phenotypic differences 
were obtained for each MZ pair. Using linear regression, absolute phe-
notypic differences were corrected for age, sex, ten genetic principal 
components and any study-specific covariates. The residuals were 
standardized and rank transformed to be used as the phenotype in 
the GWASs. A brief description of each phenotype is provided below 
(Supplementary Information Section 1.1 gives details).

ADHD is a childhood-onset neurodevelopmental disorder of atten-
tion, activity and impulsivity. Symptoms commonly persist into adult-
hood. They are typically measured continuously using rating scales, 
often with separate scales for attention problems and hyperactivity 
or impulsivity, which can be summed to give a total score of ADHD 
symptoms.

Anxiety is heterogeneous, with clinical diagnoses comprising 
specific anxiety disorders (for example, phobias, post-traumatic stress 
disorder or social anxiety disorder) and generalized anxiety disorder. 
We were interested in generalized anxiety symptoms, usually measured 
via self-report, and reflected in a total score of anxiety symptoms.

Autism spectrum disorder is a neurodevelopmental disorder 
broadly reflecting difficulties in social interaction and verbal commu-
nication, as well as repetitive behaviours. Symptoms typically emerge 
in early childhood, and assessment is carried out via questionnaires 
and/or interviews. The continuous scores reflect the presence or extent 
of autism traits rather than a diagnosis of autism spectrum disorder.

Depression is heterogeneous, with many clinical presentations. A 
diagnosis requires a distinct change of mood, characterized by sadness 
or irritability and accompanied by psychophysiological changes, such 
as disturbances in sleep and appetite or loss of the ability to experience 
pleasure. The phenotypic scores for depression reflect the presence 
of any of these symptoms rather than a diagnosis of major depression.

Neuroticism is a personality domain and refers to a lack of emo-
tional stability, stress vulnerability, the tendency to experience intense 
negative emotions, affects and cognitions, and impulsive behaviours 
under emotional strain. Neuroticism is considered a risk factor for 
anxiety and depression.

PLEs include a sub-clinical threshold of symptoms related to psy-
chosis or schizophrenia disorders, such as persecutory ideation or 
perceptual abnormalities, that are prevalent in the community and 
non-clinical samples. PLEs are screened using self- or other-report 
questionnaires or interviews that cover some or all of these domains: 
paranoia, hallucinations, cognitive disorganization, anhedonia and 
negative symptoms.

Wellbeing includes both hedonic and eudaimonic wellbeing and 
is typically assessed via questionnaires that index an individual’s sub-
jective sense of wellness, such as reporting satisfaction with one’s life 
or being hopeful and optimistic about it. The data from participat-
ing studies mainly related to subjective wellbeing (for example, life 
satisfaction). We preferred to use data for which wellbeing had been 
measured using a battery of questions. If data were only available from 
a single question reported on a Likert scale, the response variable was 
treated as a continuous scale.

Genotypes
Participating studies were required to have genotype data from all 22 
autosomes imputed to either the 1000 Genomes reference panel (pref-
erably phase 3) or the HRC. Almost all contributing studies had already 
participated in a project related to the Within Family Consortium10 and 
used the same protocol in the automated scripts for genetic data prepa-
ration and quality control procedures before GWAS analysis. Minimum 
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quality control requirements at the study level included: filtering SNPs 
for an imputation quality of >0.3 for HapMap imputed data or >0.5 
for 1000 Genomes or HRC data; a call rate of >95%; and a minor allele 
frequency of >1%. Studies also removed one pair randomly when there 
were two MZ pairs with a kinship of >0.1. Study-level genotyping and 
quality control information are included in the Supplementary Data.

Analyses
Simulations. We investigated the statistical properties of the 
MZ differences GWAS method using simulations. Methods using 
family-based design, such as the MZ differences method, comple-
ment population-based vQTL methods in three ways: (1) statistical 
power; (2) robustness to bias due to additive effects; and (3) providing 
an alternative identification strategy for triangulation40. To simulate 
vQTLs, we used the following data-generating model.

yi,t = α + β1Gi + zi + vi,t + ei,t

where yi,t is the phenotypic value for twin t = {A,B} at MZ pair i = {1,…,n} 
and α is an intercept term, which is set to 0 for simplicity. β1 is the addi-
tive effect of the SNP Gi, which is distributed as

Gi ∼ Binom (2,p)

where p is the allele frequency. Note that Gi is the same for both twins 
in the ith MZ pair. zi is the remaining polygenic risk for the MZ pair, 
which is normally distributed with a mean of 0 for simplicity, and vari-
ance is defined as

zi ∼ n (0,σ2g − 2p (1 − p)β1
2)

where σ2g is the genetic variance of the trait. The variance heterogeneity 
term vi,t is modelled as

vi,t ∼ n(0,β2Gi)

such that each additional allele at G increases the within-MZ difference 
by a factor of β2. Finally, ei,t is the independent individual residual vari-
ance defined as

ei,t ∼ n (0, 1 − σ2g − σ2v)

where σ2v is the variance of vi,t. Therefore, for a pair (A and B) of MZs, the 
additive genetic factors Gi and zi are fixed, but the within-MZ variability 
is induced from the vi,t + ei,t terms. We estimated vQTL effects from 
unrelated individuals (choosing one MZ at random) using the deviation 
regression model from Marderstein and colleagues41. We estimated 
vQTL effects using MZs and the following MZ difference model:

||yi,A − yi,B|| = β̂2Gi + ϵi

where β̂2 is an estimate of the vQTL effect, and ϵi is the residual error 
from this regression. We investigated the power of each method by 
generating vQTL effects (β2) calibrated to have 80% statistical power 
for the deviation regression model method in 500,000 unrelated 
individuals (with parameters p = 0.3 and β1 = 0). We then estimated how 
the power of the MZ differences approach varies for these parameters 
across a range of narrow-sense heritability values σ2g = h2. We calcu-
lated the power for detecting a vQTL at the genome-wide significance 
level by drawing 1,000 replications and identifying the fraction of 
simulations that had P < 5 × 10−8.

We estimated the false discovery rate for vQTL in the presence 
of tagging additive loci, following the approach outlined by Hemani 
and colleagues11. Briefly, the data-generating model described above 
is simulated with an additive effect of β1 = 0.1 generated, but the vQTL 

test is performed at a second locus, G*, that is generated to be in linkage 
disequilibrium with G. The simulations were then performed with no 
vQTL effect (β1 = 0), variance of the linkage disequilibrium between G 
and G* (r2 = 0,…,1), h2 = 0.5 and p = 0.1, and 500 repeats were performed 
for each parameter combination.

GWAS model. In our primary analysis, we estimated the association 
between the absolute phenotypic difference between MZ twins (residu-
alized for age, sex and principal components and then standardized 
and rank transformed) and the genetic marker using linear regression 
for each SNP, j:

|yi,A − yi,B| ∼ β2, jGij + ϵi, j.

We constructed two further models for sensitivity analyses: model 
2, for which the within-twin mean of the phenotype was a covariate in 
the regression; and model 3, which differed from our primary model 
by not adjusting for principal components when constructing the phe-
notype. Model 2 was constructed to examine whether adjusting for the 
within-twin mean in the GWAS model would significantly impact the 
SNP associations, which would be the case if the MZ differences largely 
reflected mean differences. However, this also risks over-correcting, 
especially for vQTLs, which affect both the mean and variance of a 
phenotype, as was indicated here by a small-to-moderate (r = ~0.3–0.6) 
positive correlation between the MZ phenotypic mean and MZ pheno-
typic differences in our sample (as was previously proposed42). Model 
3 was constructed since some participating studies were likely to be 
very small (fewer than 300 participants). Including ten principal com-
ponents for all studies might have been overly conservative, leading 
to an inflation of P values.

We used the sign test to assess whether model 2 and 3 results were 
similar to those of model 1, as indicated by the correlation between 
β values, P values and the direction of the effect. The results indicated 
that models 2 and 3 were not significantly different from model 1 (Sup-
plementary Table 3a–c). Therefore, we considered model 1 to be the 
most parsimonious, with a lower number of parameters than model 2 
but similar results, while also correcting for population stratification 
confounding. The remaining analyses were therefore conducted using 
model 1 results only.

Quality control procedure. Study-level GWAS results (Supplemen-
tary Figs. 2–7) were quality controlled using EasyQC (version 23.8)19. 
Variants with missing estimate (β) values, standard error (s.e.) values, 
statistical significance (P) values or imputation quality score and SNPs 
with a minor allele frequency of <0.01 or an imputation quality score 
of <0.5 were removed. Cptid identifiers (chr:bp:A1:A2) were created 
and alleles, effects and frequencies were checked in all GWAS results 
and harmonized according to their respective reference panel (1000 
Genomes phase 3 version 5 or the HRC). SNPs with mismatching alleles 
compared with the reference panel were removed. Indels, monomor-
phic SNPs and duplicate SNPs that could also be tri-allelic (with the 
same base pair position but different alleles) were removed, retaining 
only the SNP with the largest sample. Manhattan and QQ plots were 
obtained and lambda-median values were inspected for P value infla-
tion (Supplementary Figs. 2–6 and Supplementary Table 2 provide 
more details).

GWAS meta-analysis. METAL (2011 release)20 was used to conduct 
inverse-variance-weighted fixed-effect meta-analysis across studies, 
per phenotype. First, a meta-analysis was conducted by selecting the 
GWAS result with the largest sample from each study, regardless of the 
developmental stage. Another set of GWAS meta-analyses were then 
conducted in developmentally stratified samples for depression (child 
and adult), anxiety (child and adult), ADHD (child and adolescent) and 
autistic traits (child and adult) phenotypes (Supplementary Table 4). 
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Cptid IDs were mapped into rsIDs from the 1000 Genomes phase 3 
version 5 European panel. The SNP2GENE function in the FUMA web 
application (version 1.5.0)21 was used to annotate GWAS SNPs and iden-
tify independent significant SNPs (SNPs in linkage disequilibrium with 
the lead SNP at r2 = 0.1; lead SNPs are those in linkage disequilibrium 
with any independent significant SNPs with r2 > 0.6; Supplementary 
Table 5) and to produce regional, QQ and Manhattan plots (Supple-
mentary Figs. 7–11).

Gene-based and gene set analyses. MAGMA (version 1.08) in the 
FUMA web application (version 1.5.2)21 was used to annotate GWAS 
SNPs and conduct gene-based and gene set analyses. Meta-analysed 
GWAS results were filtered to include only SNPs available in at least 50% 
of studies. SNPs were annotated to Ensembl version 92 protein-coding 
genes for gene-based analyses using default parameters (a SNP-wise 
model for gene testing). A competitive test was conducted for gene 
set analyses using default gene sets in FUMA from MsigDB version 
7.0, totalling 15,496 gene sets (5,500 curated gene sets and 9,996 Gene 
Ontology terms). Curated gene sets contained nine data resources, 
including the Kyoto Encyclopedia of Genes and Genomes, Reactome 
and BioCarta. Gene Ontology terms comprised three categories: bio-
logical processes, cellular components and molecular functions. The 
major histocompatibility complex region was excluded from all annota-
tions (Supplementary Table 5 provides details).

Heritability analysis. SNP heritability estimates per phenotype were 
obtained using LDSC (version 1.0.1)22. The European 1000 Genomes 
linkage disequilibrium scores generated by the authors of LDSC were 
used, and SNPs for heritability analyses were merged with a set of 
~1.2 million high-quality SNPs defined by the authors of LDSC22.

Developmentally stratified analyses. For ADHD symptoms, data were 
available for children (5–12 years of age) and adolescents (13–18 years 
of age), whereas for anxiety, depression and autistic traits, data were 
available for both children and adults (>18 years of age). The strati-
fied analyses included a meta-analysis of GWAS results separately for 
samples from children, adolescents and adult for these phenotypes, 
followed by gene-based, gene set and heritability analyses, using the 
same criteria as the largest non-stratified sample.

Mendelian randomization analysis. We used a two-sample sum-
mary data Mendelian randomization to estimate the influence of the 
genetic liability of psychological phenotypes on their environmental 
sensitivity. Mendelian randomization uses genetic variants as instru-
mental variables for the exposure of interest. Three assumptions 
define instrumental variables: (1) relevance (the instrument must be 
associated with the exposure); (2) independence (there must be no 
uncontrolled confounders of the instrument–outcome association); 
and (3) exclusion restriction (the instruments only affect the outcome 
via the exposure of interest). We used the summary data from the MZ 
twins GWAS as an outcome in our Mendelian randomization analyses 
and investigated whether differences in the mean of each exposure 
(for example, depression) affect the variance in each psychiatric 
outcome. The exclusion restriction assumption requires that SNPs 
only affect the variance in the outcome via their mean effects on 
the exposure (liability to depression). This assumption would be 
violated if these variants also affected the outcome via their effects 
on the variance in depression, independent of their effects on the 
mean liability to depression. Under such a scenario, our estimates 
may be biased. Theoretically, this bias could be in either direction. 
More methodological research would be useful to determine the 
likelihood and magnitude of these potential biases. We selected 102 
independent (linkage disequilibrium = 10,000 kilobases; r2 = 0.001) 
genetic variants associated with depression in Howard et al.43 as 
instruments for genetic liability to depression. We harmonized the 

effects by effect allele, chromosome and position on build hg19. We 
used the inverse-variance-weighted estimator to estimate the effect 
of genetic liability to depression on phenotypic variability using the 
TwoSampleMR package44. The variants were strongly associated with 
depression and there was minimal overlap between our samples and 
those used in the GWASs to select variants. Therefore, weak instru-
ment bias is unlikely45. We followed the same procedure for the other 
phenotypes, but with a different number of SNPs (Supplementary 
Table 14). Because depression is strongly genetically correlated with 
anxiety but there are no well-powered GWASs for anxiety, we per-
formed a similar analysis for variance in anxiety but using the 102 
variants for depression. Here the main effects for anxiety at each of 
the 102 variants were obtained from a GWAS using UK Biobank data on 
self-reported anxiety measures46. Finally, we also tested educational 
attainment47 and body mass index. GWAS summary statistics for main 
effects were obtained from OpenGWAS48. We reported this analysis 
using the STROBE-MR checklist49.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Meta-analysed GWAS summary statistics from the current study are 
publicly available from OpenGWAS (https://gwas.mrcieu.ac.uk/). 
Accession codes for the GWAS meta-analyses are as follows: ieu-b-
5146 (adolescent) and ieu-b-5147 (child) for MZ twin differences 
in ADHD symptoms; ieu-b-5148 (largest), ieu-b-5149 (adult) and 
ieu-b-5150 (child) for MZ twin differences in anxiety symptoms; 
ieu-b-5151 (largest), ieu-b-5152 (adult) and ieu-b-5153 (child) for MZ 
twin differences in autistic traits; ieu-b-5154 (largest), ieu-b-5155 
(adult) and ieu-b-5156 (child) for MZ twin differences in depression 
symptoms; ieu-b-5157 for MZ twin differences in neuroticism score; 
ieu-b-5158 for MZ twin differences in PLEs; and ieu-b-5159 for MZ 
twin differences in subjective wellbeing. Data from individual stud-
ies are not publicly available and are subject to strict access con-
trol because the consent given by the participants does not allow 
for data storage on an individual level in repositories or journals. 
Access to these data requires specific approval from the relevant 
data access committees for each cohort. Mapping and allele fre-
quency reference files (all based on National Center for Biotechnol-
ogy Information build 37) for 1000 Genomes phase 1 version 3, 1000 
Genomes phase 3 version 5 and the HRC are available via https:// 
www.uni-regensburg.de/medizin/epidemiologie-praeventivmedizin/ 
genetische-epidemiologie/software/index.html.

Code availability
Scripts for GWAS analyses are available from GitHub at https://github. 
com/Elham-Assary/MZ-differences-GWAS.
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